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Abstract

Background: In minimally invasive surgery (MIS), the natural relationship between hand and eye is disrupted, i.e.

surgeons typically control tools inserted through the patient’s abdomen while viewing the workspace on a remote monitor,

which can be located in a variety of positions. This separates the location of visual feedback from the area in which a

motor action is executed. Previous studies suggest that the visual display should be placed directly ahead of the surgeon

(i.e. to preserve visual-motor mapping). However, the extent of the impact of this rotation on surgical performance is

unknown. Methods: Eighteen participants completed an aiming task on a tablet PC within a surgical box trainer using a

laparoscopic tool in a controlled simulated environment. Visual feedback was presented on a remote monitor located at 0�,

�45� and �90�, with order randomised using the Latin Square method. Results: Movements were significantly slower

when the monitor was 90� relative to midline, but spatial accuracy was unaffected by monitor position. Interestingly, the

effect of reduced speed in the 90� condition was transient, decreasing over time, suggesting rapid adaptation to the

rotation. Conclusions: We conclude that the angle of the visual display in the context of MIS may require a surgeon

to adapt to a changed mapping between visual inputs and motor outputs. While this adaptation occurs relatively quickly, it

may interfere with skilled actions (e.g. intracorporeal suturing) in complex surgical procedures.
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Introduction

Minimally invasive surgery (MIS) requires a high level of

manual dexterity, often within the context of high-pressured

situations (i.e. risk to the patient) and small mistakes can

have catastrophic consequences.1 Specifically, the processes

involved in MIS require the central nervous system (CNS)

to produce a congruent mapping between the workspace and

hand to execute tasks that require a high level of eye-hand

coordination. In contrast to open surgery, where direct obser-

vation and manipulation are possible, the natural relationship

between hand and eye is disrupted in MIS setups. Surgeons

typically control tools that are inserted through the patient’s

abdomen wall while viewing a camera view of the workspace

via a remote display. In this environment, visual information

is decoupled from the workspace because the display can be

located in a variety of positions and angles relative to the

surgeon and studies suggest that altering the monitor location

can distort the perception of the operative field.2–6 Added

complexity arises from camera angle, which may be 0�, 30�

or 90� relative to the laparoscopic tool. As such, head posi-

tion signals are no longer informative about target location

(i.e. the surgeon can be looking in the opposite direction to

where the hands are moving), and thus, the surgeon can

experience proprioceptive discordance, because the viewing

angle of the monitor does not provide useful information

about the visual-motor mapping (in contrast to normal

visual-motor interactions).7

Given the cost of movement errors in surgical environ-

ments, understanding how the CNS adapts during MIS

tasks is imperative.8 Several studies in the surgical literature

have suggested that incomplete decoupling of head position

signals during surgical tasks results in significant perfor-

mance costs in MIS.9–13 Generally, studies imply that MIS

monitors should be positioned in front of the surgeon, and

at eye level, in order to minimize inconsistency between the

hand and eye.9,13 Positioning the monitor head-on to the
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surgeon performing the procedure is also more likely to

yield optimal performance12 and, as a small-scale study sug-

gests, is also a surgeon’s preferred setup.14 This setup is not,

however, always adopted in operating theatres, and the

monitor is often positioned in an oblique manner relative

to the surgeon. We were, therefore, interested in how head

rotation per se might modulate motor performance. The

extant literature has demonstrated (i) performance advan-

tage when the head and hands are pointed in the same

direction during visual-motor tasks; (ii) a subjective prefer-

ence of surgeons for the visual angle to be at 0�; and (iii) an

improved ability in experienced surgeons to deal with rota-

tions of the visual display compared with less experienced

surgeons.11,12 These studies have not quantified the effects

of head rotation/viewing angle on visual-motor control pro-

cessed in MIS and thus the extent to which visual transfor-

mations modulate motoric control processes is unclear.

Therefore, an empirical investigation into the role of moni-

tor angle on motoric performance in MIS is necessary.

In order to gain a better understanding of how the position-

ing of visual feedback can modulate motor performance, we

used a sensitive Kinematic Assessment Tool (KAT), a vali-

dated measure of motor performance that is able to capture

a number of performance-related movement variables.15,16

We designed an experiment where a tablet PC was placed

within a laparoscopic box trainer (LBT; Ethicon,

Norderstedt, Germany) and participants used a laparoscopic

tool inserted through holes (or ports) in the side of the box

to make a series of discrete aiming movements (moving the

tip of the tool across the surface of the tablet PC screen).

This setup provided a simulation of a laparoscopic setup

(i.e. participants could not see what their hands were

doing and surgical tools were used to complete the task)

as per previous studies,10 but provided highly controlled

measurements of performance. To establish whether moni-

tor position interfered with performance, speed and accu-

racy of motor performance were compared when the visual

display of targets on a remote monitor was in one of three

angular positions (0�, �45� or �90�). Predicated on past

research,2–4,9 we hypothesized that increased disparity

between monitor angle and torso would result in a systema-

tic decrement in performance. A secondary examination

into the effect of monitor position was also carried out

through comparison of performance in the first and last

trials on the task.

Methods

Participants
Eighteen healthy adults took part in this study (10 males).

All participants were right-handed as indexed by the

Edinburgh Handedness Inventory (scores 440 out of 100

indicate right-hand preference17). The average age of parti-

cipants was 24.5 years (range, 21–34 years; SD, 3.7 years).

All participants had normal or corrected-to-normal vision,

with no history of movement or neurological disorders.

Ethics
The study was approved by the University of Leeds School of

Psychology ethics committee and conducted in accordance

with the 1964 Declaration of Helsinki. Participants provided

their written full informed consent prior to their involvement

in the study and were fully debriefed at the end of the study.

Materials and procedure

Ethicon laparoscopic box trainer

The LBT (390 mm � 265 mm � 180 mm; Fig. 1) was posi-

tioned 700 mm above the floor and rotated 90� anticlock-

wise with the shorter sides orthogonal to the supporting

table. The LBT had seven entry ports (a diameter of

40 mm with soft rubber entries in cross hair shapes) posi-

tioned in a letter H configuration. An ENDOPATH XCEL

Dilating Tip 12 mm trocar (Ethicon, Norderstedt, Germany)

was fully inserted through each port with the gas valve

facing away from the participant. A soft foam section mea-

suring 73 mm � 60 mm � 15 mm was used as a collar

between the port and trocar to allow free range of move-

ment. A Toshiba Portege M700-13P tablet PC (screen

260 � 163 mm; 1440 � 900 pixels; 32 bit colour; 60 Hz

refresh rate) was placed inside the LBT at the distal right

corner, and the built-in touch screen acted as an input

device. Participants used a 330-mm-long laparoscopic gras-

per with plastic tip that was inserted through the trocar and

placed on the screen of the tablet PC. The lowest point of

the screen was positioned 580 mm above the table ensuring

the display was presented at eye level. The end point of the

laparoscopic grasper was represented by an onscreen cursor

and controlled by moving across the touch screen and the

position was sampled at 120 Hz. Black markers were placed

on the floor to indicate where the participants should stand

in order to ensure a consistent viewing distance of approxi-

mately 800 mm.

Figure 1 A Toshiba Portege laptop was placed inside the Ethicon
laparoscopic box trainer. The laparoscopic tool was used as a
stylus (akin to writing on a touch screen) to record kinematic
data.
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Visual-motor transformation task

The experimental task was created using the KAT,16 a vali-

dated system for objectively measuring human motor per-

formance in configurable visual-spatial tasks.15,16,18 The

KAT task in this study was displayed on a tablet PC

inside the LBT, and participants were required to make a

series of discrete aiming movements between targets that

appeared on a remote screen, with a 30� rotation applied

to increase the complexity of the task. Each trial began at

the start icon (the green S in Fig. 2), and participants used

the laparoscopic grasper to move a cursor from one green

dot to the next in a sequential manner. Once a green dot

was reached, the next green dot would appear. Participants

continued to move from one green dot to the next until

they arrived at the red F for finish icon.

As the stimuli in the aiming task were occluded from direct

vision (i.e. the tip of the laparoscopic grasper was occluded

inside the LBT), visual stimuli therefore appeared on a Dell

1708FP monitor (screen 339 mm � 270 mm, 1280 � 1024

resolution, 75 Hz refresh rate) positioned at one of three

angles (Fig. 3). Participants performed an aiming task trial

(i.e. moving from the S to F icon) 12 times at each monitor

position (0�, �45�, �90�; 36 trials in total), and the order

in which participants undertook these three conditions was

randomised using the Latin Square method.

Analysis
Three standardized temporal, spatial and frequency metrics

were recorded during the aiming task:

(1) Movement time (MT): the time taken to complete a trial of the

aiming task trial, as an indicator of movement speed (seconds).

(2) Path length (PL): the length of movement trajectories (milli-

metres) from start to finish of an aiming task trial, and an

indicator of spatial accuracy; longer trajectories indicate disrup-

tion to the path of movement, either due to increased motor

variability (e.g. shaky hands) or deviation from the straight

path between aiming targets.

(3) Normalized jerk (NJ): a marker of the smoothness of movements

throughout an aiming task trial; NJ is the time derivative of

acceleration and is minimized in smooth movements.16

Mean scores for MT, PL and NJ were calculated across all

12 aiming task trials, and across the first four (F4) and last

four (L4) trials, for each monitor position condition (0� vs.

45� vs. 90�). Separate repeated measures ANOVAs were

applied for each outcome metric recorded on the aiming

Figure 2 Monitor positions for the experimental aiming task. Examples of the monitor positions for the experimental aiming task whereby the
visual feedback was presented in three different positions: (A) 0� position: visual feedback was presented on a monitor positioned directly
ahead of the participant; (B) 45� position: visual feedback was presented on a monitor positioned at 45� position relative to body orientation; (C)
90� position: visual feedback was presented on a monitor positioned at 90� position relative to body orientation.

F

S

Figure 3 Schematic of the KAT aiming task. Participants held a
laparoscope (inserted through a trocar) in their right (preferred)
hand, to move a cursor (30� distortion) presented on the screen
from one dot to the next in a sequential manner for 20 move-
ments (12 trials total).
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task to examine the effects of monitor position on motor

performance (0� vs. 45� vs. 90�) and to investigate learning,

computed as the difference in performance measures

between the beginning (i.e. F4 trials) and end (L4 trials)

trial blocks. Power computations used the observed sample

size as the basis of the population effect.19

Results

Movement time
Analysis of MT data revealed the main effects of position

(F(2,34) = 4.16, P = 0.024, �2
p = 0.2, 1 � b = 0.69) and trial

(F(1,17) = 22.18, P5 0.001, �2
p = 0.57, 1 � b = 0.99).

Participants were significantly faster at completing the

aiming task when the monitor was 0� from midline

(mean path length time = 1.13 s, SE = 0.06), compared with

the 45� conditions (mean = 1.16 s, SE = 0.05) and 90�

(mean = 1.25 s, SE = 0.06) (see Fig. 4A). Aiming movements

also gained speed towards the end of the task, with signifi-

cantly faster movements made across the L4 trial block

(mean MT in F4 = 1.27 s, SE = 0.06; L4 = 1.13 s, SE = 0.05;

Figs 4A and 5A). There was a significant position � trial

interaction (F(2,34) = 4.18, P = 0.024, �2
p = 0.2, 1 � b = 0.7)

whereby the effect of position was present in the F4 trials

(F(2,34) = 5.13, P = 0.011, �2
p = 0.23, 1 � b = 0.79) but not

in the L4 (F(2,34) = 1.04, P = 0.37, �2
p = 0.6, 1 � b = 0.06).

Bonferroni post hoc comparisons subsequently showed that

this effect of position in the early trials was driven by a

significant difference (P = 0.023) between the 0� (mean =

1.15; SE = 0.06) and 90� screen positions (mean = 1.40 s;

SE = 0.10) and between the 45� (mean = 1.20 s, SE = 0.06)

and 90� screen positions (P = 0.027). There was no signifi-

cant difference in MT between the 0� condition and 45�

condition (P = 0.89). There were no differences across the

L4 trials (P4 0.266).

Path length
PL provides an index of movement accuracy, whereby

shorter PLs indicate better spatial accuracy because trajec-

tories are shorter. Observations of the means showed that

there was little difference in PL between the monitor posi-

tion conditions (mean PL for 0� = 47.30 mm, SE = 0.97;

45� = 47.65 mm, SE = 0.84; 90� = 49.47 mm, SE = 1.42),

hence the main effect of position was not significant

A B

C D

Figure 4 Performance in the aiming task trials. (A) Mean measures of movement time (s) recorded across the first four and last four trials of
the aiming task, for each of the three monitor position conditions (0�, 45� and 90�). Error bars represent � 1 SEM. Mean measures of motor
performance plotted on a trial-by-trial basis for (B) movement time (s); (C) path length (mm); and (D) normalized jerk for each of the three
monitor position conditions.
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(P = 0.15). Participants did, however, show significant

improvements in spatial accuracy as the task progressed; a

main effect of trial (F(1,17) = 6.2, P = 0.02, �2
p = 0.27,

1 � b = 0.65; Figs 4B and 5B), revealed shorter PLs in the

L4 trials (mean = 47.57; SE = 0.091) in comparison with the

F4 (mean = 49.0; SE = 1.32). There was no position � trial

interaction (P = 0.23).

Normalized jerk
Lower NJ values indicate smoother aiming movements. The

ANOVA for NJ showed that there was no main effect of

position (F(2,34) = 1.26, P = 0.3, �2
p = 0.07, 1 � b = 0.26)

and no position � trial interaction (F(2,34) = 2.52, P = 0.1,

�2
p = 0.13, 1 � b = 0.47). Nevertheless, there was a main

effect of trial (F(1,17) = 11.85, P = 0.003, �2
p = 0.41,

1 � b = 0.9; Figs 4C and 5C), as participants produced

increasingly smoother aiming movements towards the end

of the task in the L4 trials (mean NJ for L4 = 611.20,

SE = 83) compared with the F4 trials (mean PL for

F4 = 903.44, SE = 130.92).

Here we report a comparison of the performance measures

between the F4 and L4 trials, but the same pattern of results

was obtained when comparing the first and last three trials

(see Fig. 4B–D for a trial-by-trial view of the data). To

examine more precisely when the initial performance decre-

ment for the 90� condition had been overcome by partici-

pants, we performed a post hoc ANOVA for MT at trial 5

and found that differences were not statistically significant

(P4 0.05).

Discussion

One inherent difficulty in MIS is that the viewing angle in

these environments does not provide useful information

about the visual-motor mapping. The purpose of the present

experiment was to quantify the effects of the monitor posi-

tion on the quality of motor performance in MIS. We also

examined the effect of monitor position on motor perfor-

mance over time. Specifically, we examined the extent to

which decrements in performance ameliorate with time

(i.e. adaptation through repetitious practice). This was

achieved by varying the position of the monitor displaying

visual feedback from directly in front of the participant (0�),

to a position of �45�, and �90� relative to the body axis.

Participants completed a kinematic visual-motor transfor-

mation task with a laparoscopic tool, and performance

metrics allowed us to assess the extent to which head rota-

tion modulated task performance.

The results showed no difference in motoric performance

between the monitor positions of 0� and 45�. However,

consistent with previous studies that have found optimal

performance with the monitor at 0� and significant degra-

dation in performance beyond 45�,3,12,20 we observed a sig-

nificant decrease in performance as indexed by MT in the

initial trial in the 90� condition. PL (an index of accuracy)

and NJ (a marker of fluency/smoothness) demonstrated

similar trends but did not reach statistical significance

thresholds.

Being able to adapt quickly to information presented in

different locations and use this input for action has clear

advantages for a surgeon who has to simultaneously: (a)

deal with complex environments and (b) produce skilled

goal-oriented behaviour. In this experiment, we note that

the initial decrement in performance when the monitor

was positioned at 90� had almost disappeared by the end

of the task. In other words, initial performance was

degraded, yet individuals were able to adapt to the new

head orientation – a particularly useful process in an MIS

environment, when the monitor position can vary from

theatre to theatre.

There is a functional relationship between head position and

arm movements,21 and our data serve to support this

assumption. Previous research has demonstrated that neck

afferents are important for accurate control of the hand in

the absence or degradation of visual-motor information;21,22

and vestibular information plays an important role in the

control of arm movements.23,24 The data we present also

add to the literature that has demonstrated the capacity of

humans to adapt to visual and mechanical distortions,25,26

Adaptation of the human sensorimotor system is, without a

doubt, an impressive feat, but the temporary impairment in

performance experienced during this process could poten-

tially be problematic in a surgical environment. Specifically,

there may be clinical implications for complex MIS proce-

dures where it can be necessary to change the port site

through which the camera is passed; or in operations

where a re-adjustment of the camera is required. We sug-

gest that it is vital that motor movements are adjusted

appropriately in such instances.27 Moreover, when a sur-

geon moves from one operating setup to another (e.g.

between an elective theatre to the acute theatre, or from a

training simulator to theatre), the monitor orientation

should be considered to maintain maximal operative

efficiency.

It is worth considering other visual factors that may mod-

ulate technical performance in MIS and potentially affect

patient safety. The increasing proliferation of virtual envir-

onment technologies means that the monitors used in MIS

have the potential to supplement natural vision and thus

improve performance. For example, displays that present

stereoscopic images are becoming increasingly popular in

A.D. White et al. Monitor position in MIS 5



MIS and specifically laparoscopy.29,30 These systems present

surgeons with cues such as depth information, which could

be useful for a number of complex surgical tasks as well as

more fundamental task such as tying a suture. In robot-

assisted surgery, where technologies allow for augmenting

natural vision, the reverse braille effect has been reported31

where sensory integration allows for tactile feedback to be

augmented by the enhanced visual information. However,

there may be some scenarios in which sustained exposure to

displays could have negative consequences. For example, it

is known that binocular displays place unnatural pressures

on the human oculomotor system32,33 and future work

should examine the relationship between stereoscopic dis-

plays, visual fatigue and discomfort on motor performance

in MIS.

Conclusions

The present work raises an important question regarding

surgical training; how can we minimize the negative effects

of visuospatial distortions and transformations in MIS? The

widespread use of virtual reality simulators, such as the LAP

Mentor (Simbionix),26 allows students to practice their skills

frequently and in a safe environment before entering a real-

life scenario. The degree to which simulators provide useful

generic training that applies to a variety of surgical tasks is

debatable. There are certainly concerns over the extent to

which the performance metrics recorded by LAP Mentor

reflect a person’s real-life level of surgical skill.27 Concrete

guidelines on how to structure training time (e.g. repeatedly

carrying out the same task to gain high-proficiency in an

isolated skill versus carrying out a variety of surgical tasks)

with simulated systems also do not exist. Critically, a

common feature within virtual surgical training schedules

is the use of a monitor with a midline-oriented screen (i.e.

screen directly in front of the trainee; although distance

between monitor and surgeon is much shorter than in thea-

tre). If trainee surgeons practice their skills with this setup,

it is highly likely to have a cost when the same task must be

carried out when the screen is set off at an angle in theatre.

Our results, and those of past studies, lead us to predict that

the cost would manifest in reduced motor speed, and this

may be amplified in a situation where a surgeon has limited

experience.11

Structural Learning (SL) theory predicts that learning a sur-

gical technique in a virtual context should transfer to a

similar situation in real life if training allows one to learn

the fundamental underlying structure of the parameter

space,28 According to SL,34,35 when learning a new skill

(e.g. a novel laparoscopic method), the CNS creates a gen-

eral set of rules that can later be applied and modified when

encountering similar scenarios (e.g. a monitor position off-

set from midline). This process, often described in the cog-

nitive literature as learning to learn (i.e. where common

features in a cognitive task are said to facilitate learning

of a new but similar task), may be a crucial part of gaining

general skills.18 In light of our findings, surgeons might be

best advised to avoid using monitor positions that deviate

from the body midline where possible. In order to ensure

that surgical trainees are fully prepared for work in different

hospitals/theatres, future research should present trainees

with varying monitor display positions in simulation.

Based on SL, we predict that this approach will lead to

learning that yields adaptability without loss of specificity.

Acknowledgements

This research project was supported by a grant from the

Leeds Teaching Hospitals Charitable Trust.

Conflict of interest

No conflicts of interest have been declared.

References

1. White AD, Skelton M, Mushtaq F, Pike TW, Mon-

Williams M, Lodge JPA, et al. Inconsistent reporting of mini-

mally invasive surgery errors. Ann R Coll Surg Engl 2015; 97:

608–612. doi: 10.1308/rcsann.2015.0038.

2. Holden JG, Flach JM, Donchin Y. Perceptual-motor coordina-

tion in an endoscopic surgery simulation. Surg Endosc 1999;

13: 127–132. doi: 10.1007/s004649900920.

3. Matern U, Faist M, Kehl K, Giebmeyer C, Buess G. Montior

position in laparoscopic surgery. Surg Endosc 2005; 19:

436–440. doi: 10.1007/s00464-004-9030-7.

4. Conrad J, Shah AH, Divino CM, Schluender S, Gurland B,

Shlasko E, et al. The role of mental rotation and memory

scanning on the performance of laparoscopic skills: a study

on the effect of camera rotational angle. Surg Endosc 2006; 20:

504–510. doi: 10.1007/s00464-005-0363-7.

5. Moschos E, Coleman RL. Acquiring laparoscopic skill profi-

ciency: does orientation matter. Am J Obstet Gynecol 2004;

191: 1782–1787. doi: 10.1016/j.ajog.2004.07.073.

6. Medina M. Image rotation and reversal: major obstacles in

learning intracorporeal suturing and knot-tying. JSLS 1997;

1: 331–336. PMID: 9876698.

7. Lackner JR. Adaptation to visual and proprioceptive rearran-

gement: origin of the differential effectiveness of active and

passive movement. Percept Psychophys 1997; 21: 55–59. doi:

10.3758/BF03199468.

6 A.D. White et al. Monitor position in MIS

http://dx.doi.org/10.1308/rcsann.2015.0038
http://dx.doi.org/10.1007/s004649900920
http://dx.doi.org/10.1007/s00464-004-9030-7
http://dx.doi.org/10.1007/s00464-005-0363-7
http://dx.doi.org/10.1016/j.ajog.2004.07.073
http://www.ncbi.nlm.nih.gov/pubmed/9876698
http://dx.doi.org/10.3758/BF03199468
http://dx.doi.org/10.3758/BF03199468


8. Wann JP, Rushton S, Mon-Williams M. Natural problems for

stereoscopic depth perception in virtual environments. Vision

Res 1995; 35: 2731–2736. doi: 10.1016/0042-6989(95)00018-U.

9. Hanna GB, Shimi SM, Cuschieri A. Task performance in

endoscopic surgery is influenced by location of the image

display. Ann Surg 1998; 227: 481–484.

10. Cresswell AB, Macmillan AL, Hanna GB, Cuschieri A.

Methods for improving performance under reverse alignment

conditions during endoscopic surgery. Surg Endosc 1999; 13:

591–594. doi: 10.1007/s004649901048.

11. Gould JC, Frydman J. Reverse-alignment surgical skills assess-

ment. Surg Endosc 2007; 21: 669–671. doi: 10.1007/s00464-

006-9135-2.

12. Haveran L, Novitsky Y, Czerniach D. Optimizing laparoscopic

task efficiency: the role of camera and monitor positions. Surg

Endosc 2007; 21: 980–984. doi: 10.1007/s00464-007-9360-3.

13. Zhang L, Cao CGL. Effect of automatic image realignment on

visuomotor coordination in simulated laparoscopic surgery.

Appl Ergon 2012; 43: 993–1001. doi: 10.1016/j.apergo.2012.

02.001.

14. Zehetner J, Kaltenbacher A, Wayand W, Shamiyeh A. Screen

height as an ergonomic factor in laparoscopic surgery. Surg

Endosc 2006; 20: 139–141. doi: 10.1007/s00464-005-0251-1.

15. Raw RK, Wilkie RM, Culmer PR, Mon-Williams M. Reduced

motor asymmetry in older adults when manually tracing

paths. Exp Brain Res 2012; 217: 35–41. doi: 10.1007/s00221-

011-2971-x.

16. Culmer PR, Levesley MC, Mon-Williams M, Williams JHG. A

new tool for assessing human movement: the Kinematic

Assessment Tool. J Neurosci Methods 2009; 184: 184–192.

doi: 10.1016/j.jneumeth.2009.07.025.

17. Oldfield RC. The assessment and analysis of handedness: the

Edinburgh inventory. Neuropsychologia 1971; 9: 97–113. doi:

10.1016/0028-3932(71)90067-4.

18. Johnson RL, Culmer PR, Burke MR, Mon-Williams M,

Wilkie RM. Exploring structural learning in handwriting.

Exp Brain Res 2010; 207: 291–295. doi: 10.1007/s00221-

010-2438-5.

19. O’Keefe DJ. Brief report: post hoc power, observed power, a

priori power, retrospective power, prospective power, achieved

power: sorting out appropriate uses of statistical power ana-

lyses. Commun Methods Meas 2007; 1: 291–299. doi: 10.1080/

19312450701641375.

20. Emam TA, Hanna G, Cuschieri A. Comparison of orthodox

versus off-optical axis endoscopic manipulations. Surg Endosc

2002; 16: 401–405. doi: 10.1007/s00464-001-8137-3.

21. Berger M, Lechner-Steinleitner S, Kozlovskaya I,

Holzmüller G, Mescheriakov S, Sokolov A, et al. The effect

of head-to-trunk position on the direction of arm movements

before, during, and after space flight. J Vestib Res 1998; 8:

341–354. doi: 10.3233/VES-1998-8501.

22. Guerraz M, Blouin J, Vercher J-L. From head orientation to

hand control: evidence of both neck and vestibular involve-

ment in hand drawing. Exp Brain Res 2003; 150: 40–49. doi:

10.1007/s00221-003-1411-y.

23. Bresciani J-P, Blouin J, Popov K, Bourdin C, Sarlegna F,

Vercher JL, et al. Galvanic vestibular stimulation in humans

produces online arm movement deviations when reaching

towards memorized visual targets. Neurosci Lett 2002; 318:

348. doi: 10.1016/S0304-3940(01)02462-4.

24. Bresciani J-P, Blouin J, Sarlegna F, Bourdin C, Vercher JL,

Gauthier GM, et al. On-line versus off-line vestibular-evoked

control of goal-directed arm movements. Neuroreport 2002;

13: 1563–1566. PMID: 12218706.

25. Shadmehr R, Brashers-Krug T. Functional stages in the for-

mation of human long-term motor memory. J Neurosci 1997;

17: 409–419. PMID: 8987766.

26. Stratton GM. Vision without inversion of the retinal image.

Psychol Rev 1897; 4: 463–481. doi: 10.1037/h0075482.

27. Andreatta PB, Woodrum DT, Gauger PG, Minter RM.

LapMentor metrics possess limited construct validity. Simul

Healthc 2008; 3: 16–25. doi: 10.1097/SIH.0b013e31816366b9.

28. White AD, Giles O, Sutherland R, Ziff O, Mon-Williams M,

Wilkie R, et al. Minimally invasive surgery training using

multiple port sites to improve performance. Surg Endosc

2014; 28: 1188–1193. doi: 10.1007/s00464-013-3307-7.

29. Destro F, Cantone N, Lima M. 3D laparoscopic monitors.

Med Equip Insights 2014; 5: 9–12. doi: 10.4137/MEI.S13342.

30. Smith R, Day A, Rockall T, Ballard K, Bailey M, Jourdan I.

Advanced stereoscopic projection technology significantly

improves novice performance of minimally invasive surgical

skills. Surg Endosc 2012; 26: 1522–1527. doi: 10.1007/s00464-

011-2080-8.

31. Tewari AK, Patel ND, Leung RA, Yadav R, Vaughan ED, El-

Douaihy Y, et al. Visual cues as a surrogate for tactile feed-

back during robotic-assisted laparoscopic prostatectomy: pos-

terolateral margin rates in 1340 consecutive patients. BJU Int

2010; 106: 528–536. doi: 10.1111/j.1464-410X.2009.09176.x.

32. Wann JP, Mon-Williams M. What does virtual reality NEED?:

human factors issues in the design of three-dimensional com-

puter environments. Int J Human-Computer Studies 1996; 44:

829–847. doi: 10.1006/ijhc.1996.0035.

33. Mon-Williams M, Wann JP. Binocular virtual reality displays:

when problems do and don’t occur. Hum Factors 1998; 40:

42–49. doi: 10.1518/001872098779480622.

34. Braun DA, Waldert S, Aertsen A, Wolpert DM, Mehring C.

Structure learning in a sensorimotor association task. PLoS

One 2010; 5: e8973. doi: 10.1371/journal.pone.0008973.

35. Wolpert DM, Diedrichsen J, Flanagan JR. Principles of sen-

sorimotor learning. Nat Rev Neurosci 2011; 12: 739–751. doi:

10.1038/nrn3112.

A.D. White et al. Monitor position in MIS 7

http://dx.doi.org/10.1016/0042-6989(95)00018-U
http://dx.doi.org/10.1007/s004649901048
http://dx.doi.org/10.1007/s00464-006-9135-2
http://dx.doi.org/10.1007/s00464-006-9135-2
http://dx.doi.org/10.1007/s00464-007-9360-3
http://dx.doi.org/10.1016/j.apergo.2012.02.001
http://dx.doi.org/10.1016/j.apergo.2012.02.001
http://dx.doi.org/10.1007/s00464-005-0251-1
http://dx.doi.org/10.1007/s00221-011-2971-x
http://dx.doi.org/10.1007/s00221-011-2971-x
http://dx.doi.org/10.1016/j.jneumeth.2009.07.025
http://dx.doi.org/10.1016/0028-3932(71)90067-4
http://dx.doi.org/10.1016/0028-3932(71)90067-4
http://dx.doi.org/10.1007/s00221-010-2438-5
http://dx.doi.org/10.1007/s00221-010-2438-5
http://dx.doi.org/10.1080/19312450701641375
http://dx.doi.org/10.1080/19312450701641375
http://dx.doi.org/10.1007/s00464-001-8137-3
http://dx.doi.org/10.3233/VES-1998-8501
http://dx.doi.org/10.1007/s00221-003-1411-y
http://dx.doi.org/10.1007/s00221-003-1411-y
http://dx.doi.org/10.1016/S0304-3940(01)02462-4
http://www.europepmc.org/abstract/med/12218706
http://www.ncbi.nlm.nih.gov/pubmed/8987766
http://dx.doi.org/10.1037/h0075482
http://dx.doi.org/10.1097/SIH.0b013e31816366b9
http://dx.doi.org/10.1007/s00464-013-3307-7
http://dx.doi.org/10.4137/MEI.S13342
http://dx.doi.org/10.1007/s00464-011-2080-8
http://dx.doi.org/10.1007/s00464-011-2080-8
http://dx.doi.org/10.1111/j.1464-410X.2009.09176.x
http://dx.doi.org/10.1006/ijhc.1996.0035
http://dx.doi.org/10.1518/001872098779480622
http://dx.doi.org/10.1371/journal.pone.0008973
http://dx.doi.org/10.1038/nrn3112
http://dx.doi.org/10.1038/nrn3112

