Journal of Surgical Simulation 2016; 3: 1 - 7
Published: 20 June 2016
Original article
Does monitor position influence visual-motor performance during minimally invasive surgery?
Abstract
Background: In minimally invasive surgery (MIS), the natural relationship between hand and eye is disrupted, i.e. surgeons typically control tools inserted through the patient’s abdomen while viewing the workspace on a remote monitor, which can be located in a variety of positions. This separates the location of visual feedback from the area in which a motor action is executed. Previous studies suggest that the visual display should be placed directly ahead of the surgeon (i.e. to preserve visual-motor mapping). However, the extent of the impact of this rotation on surgical performance is unknown.
Methods: Eighteen participants completed an aiming task on a tablet PC within a surgical box trainer using a laparoscopic tool in a controlled simulated environment. Visual feedback was presented on a remote monitor located at 0°, ±45° and ±90°, with order randomised using the Latin Square method.
Results: Movements were significantly slower when the monitor was 90° relative to midline, but spatial accuracy was unaffected by monitor position. Interestingly, the effect of reduced speed in the 90° condition was transient, decreasing over time, suggesting rapid adaptation to the rotation.
Conclusions: We conclude that the angle of the visual display in the context of MIS may require a surgeon to adapt to a changed mapping between visual inputs and motor outputs. While this adaptation occurs relatively quickly, it may interfere with skilled actions (e.g. intracorporeal suturing) in complex surgical procedures.
Keywords
laparoscopy; monitor position; simulation; motor performance; motor learning; sensorimotor adaptation